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Canonical solution of a system of long-range interacting rotators on a lattice
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The canonical partition function of a system of rotators~classicalX-Y spins! on a lattice, coupled by terms
decaying as the inverse of their distance to the powera, is analytically computed. It is also shown how to
compute a rescaling function that allows us to reduce the model, for anyd-dimensional lattice and for any
a,d, to the mean-field (a50) model.
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I. INTRODUCTION

Let us consider the following classical Hamiltonian mod
of a system of rotators:

H5
1

2 (
i 51

N

Li
21

1

2 (
i , j 51

N

@12cos~u i2u j !#5K1V. ~1!

The potential energyV is not thermodynamically stable an
the ensemble-averaged energy densityU5^H/N& diverges
in the thermodynamic limit~TL! @1#. If the potential-energy
term is divided byN, then the energy density becomes inte
sive and it is bounded asN goes to infinity.

Indeed, dynamics and thermodynamics of t
1/N-rescaled model have been extensively investigated@2#;
in particular, Ruffo and Antoni, who called it the Hami
tonian mean-field~HMF!, X-Y model, solved it in the ca-
nonical ensemble, and compared the theoretical caloric (T vs
U) and magnetization (M vs U) curves with those obtaine
from a microcanonical simulation@3#.

Here we consider a generalization of model~1!:

H5
1

2 (
i 51

N

Li
21

1

2 (
iÞ j

N
12cos~u i2u j !

r i j
a

. ~2!

The rotators are placed at the sites of a lattice and the in
action between rotatorsi and j decays as the inverse of the
distance to the powera.

A one-dimensional version of model~2! has been studied
by Anteneodo and Tsallis@4#, who have numerically mea
sured the largest Lyapounov exponent, as a function ofN and
a. Through a rescaling factorN* 5(N12a21)/(12a), An-
teneodo and Tsallis showed that their results coincide w
those previously obtained for the HMF (a50) model; this
rescaling could then give a well-defined TL to model~2!.

In a recent paper, Tamarit and Anteneodo, using a res
ing factor Ñ52a(N12a21)/(12a), have shown that the
caloric and magnetization curves of model~2! in one dimen-
sion collapse onto the curves of the HMF model@5#. This
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universality emerges plottingT/Ñ as a function ofH/NÑ

and M as a function ofH/NÑ, from molecular-dynamics
simulation of model~2! for different N anda values. These
authors conjecture that the results they obtained in the o
dimensional case might be general, and valid in any dim
sion d and fora,d.

II. PARTITION FUNCTION

In this work, inspired by@3# and@5#, we analytically com-
pute the partition function of anÑ-rescaled model~2! for any
d anda,d. In formula~21!, we give the right expression o
the rescaling functionÑ, to obtain universal-state curves fo
all lattice models with long-range (a,d) interactions.

Let us now rewrite the rescaled version of Hamiltoni
~2!:

H5
1

2 (
i 51

N

Li
21

1

2Ñ
(

i , j 51

N
12cos~u i2u j !

r i j
a

2hx(
i 51

N

mix2hy(
i 51

N

miy , ~3!

where we have introduced an external magnetic fieldh
5(hx ,hy) of modulush, which makes it possible to comput
the magnetization. The indexesi , j label the sites of a
d-dimensional generic lattice;r i j is the distance betwee
them, with periodic boundary conditions and nearest ima
convention~the definition ofr ii will be given shortly!; and
a>0. At each site, a classical rotator (X-Y spin! of unit
momentum of inertia is represented by conjugate canon
coordinates (Li ,u i), where theLi ’s are angular momenta
and theu i ’s P@0,2p) are the angles of rotation on a famil
of parallel planes, each one defined at each lattice poinx
andy refer to the components of boldface two–dimensio
vectors defined over these planes. To each lattice site, a
vector

mi5~mix ,miy!5~cosu i ,sinu i ! ~4!

is associated, and the total magnetization is given by
ic
303 ©2000 The American Physical Society
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M5~Mx ,M y!5
1

N (
i 51

N

mi . ~5!

Note in Eq. ~3! the rescaling factorÑ in front of the
potential-energy term, now written as a free double sum o
both indexes.Ñ should be regarded as an unknown functi
of N,a,d and the geometry of the lattice, with the fundame
tal property of making

1

Ñ
(

j , j Þ i

1

r i j
a

~6!

an intensive quantity; this guarantees the thermodynamic
bility of the potential. We also note that the sum in Eq.~6! is
independent of the origini because of periodic conditions
To reproduce the usual HMF it is also necessary t
Ñ(N,a50,d)5N. The constraintiÞ j over the double sum
is removed definingr ii

a51/b, a finite number. Since the nu
merator 12cos(ui2uj) is zero for i 5 j , the choice ofb is
free. The removal of the constraint allows us to introduce
distance matrixRi j8 51/r i j

a ; the diagonalization of such ma
trix is the key point to obtain, in the computation of th
partition function, known integrals in the variablesu i .

As usual, the partition function factorizes in a kinetic pa
ZK5(2p/b)N/2, whereb51/kBT, and a potential partZV .
After defining Ri j 5(b/2Ñ)Ri j8 , B5bh, C5exp@2(b/

2Ñ)( i j (1/r i j
a )#, the potential part can be written as

ZV5CE
2p

p

dNu expF (
i , j ,m

mimRi j mj m1(
i

BmmimG , ~7!

where m5x,y. Diagonalizing the symmetric matrixR
5(Ri j ) with the unitary matrixU such thatR5UTDU, D
5(Rid i j ), whereRi are the eigenvalues ofR, we can write
the first part of the exponent in Eq.~7! as

(
i j

~mixRi j mjx1miyRi j mjy!5(
im

~nix
2 Ri1niy

2 Ri !, ~8!

wherenim5( jUi j mj m . In order to apply the Gaussian tran
formation

eaS2
5

1

A4pa
E

2`

1`

dze2z2/4a1Sz a.0 ~9!

to each term of the sum in the right-hand side of Eq.~8!,
eachRi must be positive. The spectrum can be explici
computed using ad-dimensional Fourier transform of matri
R, the eigenvalues being labeled by vectors of the recipro
lattice. These eigenvalues are trivially related to those
matrix R8. A study of the spectrum ofR8 in the limit N
→` and for b50 shows that whena.d, each element of
the spectrum converges to a finite quantity, the least eig
values being negative and of order one in modulus; w
a,d, a part of the spectrum converges to a finite quant
another part diverges to1`, at most asÑ. However, this
last part consists of a fraction of the total number of eig
values that goes to zero in the limitN→`. The least eigen-
value is still negative and of order one in modulus. Then p
er

-
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t

e
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n
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-

rt

of the spectrum is negative, but it is easily seen that it
shifted byb. Thus, callingp the least eigenvalues ofR8 for
b50 and choosing

b52p1e, e.0, ~10!

we have that with thisb the whole spectrum ofR8 ~and
therefore that ofR) becomes positive. Then for eachi
51, . . . ,N, m5x,y we can apply Eq.~9! with the corre-
spondencea→Ri , S→nim , z→zim . Performing the inte-
grals over variablesu i and using the transformationzim
52( j (UR) i j C j m with Jacobian 2NdetR, we can rewrite the
partition function as

Z5CZK

detR

pN E
2`

1`

dNCxd
NCyexpS NH 2(

i j m
C im

Ri j

N
C j m

1
1

N (
l

lnF2pI 0S U2(
j

Rl j Cj1BU D G J D , ~11!

where I 0 is the zeroth-order modified Bessel function. T
isolation of theN factor in the exponential prepares the o
ject for the use of the saddle-point method. The quantity
curly brackets is intensive~i.e., not dependent onN for suf-
ficiently large N!. Double sums in the first two terms ar
compensated byR/N5(b/2NÑ)R8 and the last sum has 1/N
in front of it. The argument ofI 0 is also intensive because
involves a term of the form( jRl j 5(b/2Ñ)( jRl j8 . If we
call f (w) the function in curly brackets, wherew
5(C1x , . . . ,CNx ,C1y , . . . ,CNy), then the application of
the method requires the following three conditions:f (w) ad-
mits a stationary pointw0 ; w0 is a simple stationary point
i.e., detHu0Þ0, whereHu0 is the Hessian matrix off in w0;
the path of integration can be deformed~generally going into
C 2N) into a path that passes throughw0 following the steep-
est descent off (w) and such thatf (w), f (w0) throughout
the whole path. If the pointw0 is a maximum, no deforma
tion is necessary and the method is also called the Lap
method. Since, as we show below,w0 is indeed a real-valued
maximum, we readily obtain for the free energy per parti
F,

2bF5 lim
N→`

ln Z

N

5 lim
N→`H 1

2
lnS 2p

b
D 2

b

2Ñ
(

j

1

r i j
a

1max
w

@ f ~w!#

1
1

N
ln

detR

AdetS 2
N

2
HU0D J . ~12!

The stationary point w0 is given by the vector
(Cx , . . . ,Cx ,Cy , . . . ,Cy), homogeneous on the lattic
sites. DefiningC5(Cx ,Cy), its direction is that ofB, and
its modulusC is given by the solution of
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C5
I 1

I 0
~b@AC1h# !, ~13!

with

A5
1

Ñ
(

j
Ri j8 5

1

Ñ
Fb1(

j Þ i

1

r i j
a G , ~14!

and whereI 1 is the first-order modified Bessel function. I
Eq. ~14!, A does not depend oni because of the periodi
boundary conditions. We note that whenh50 we have infi-
nitely many degenerate solutions, since only the modulusC
is determined. Evaluation of the elements of the Hessian
trix at the stationary point gives us

2
N

2

]2f

]C im]C j n
U

0

5Ri j dmn2~R2! i j gmn~w0! ~15!

where we do not give the explicit expression ofgmn(w0). As
we will see shortly, the eigenvalue analysis of the Hess
matrix ~15! shows that the stationary pointw0 is a maximum.
Then, the Laplace method applies and Eq.~12! is valid.
However, only in the long-range case (a,d) is the last term
in the rightmost side of Eq.~12! zero; whena.d its expres-
sion does not appear to be manageable. We will commen
this point later. Restricting then toa,d, and computing the
derivative of Eq.~12! with respect to the magnetic field, w
find that the magnetizationM5^uMu& is given by the solu-
tion C of Eq. ~13!. Then, the internal energyU is given by

U5
]~bF !

]b
5

1

2b
1

A

2
~12M2!2hM. ~16!

Equations~13! and ~16! are the same as those of HMF,
soon as a properÑ rescaling gives

A5
1

Ñ
(

j
Ri j8 5

1

Ñ
Fb1(

j Þ i

1

r i j
a G51. ~17!

Now, from Eqs.~15! and~17!, and callingln the eigenvalues
of R8, we find that, choosingB along one of the coordinat
axes, the eigenvalues of the Hessian matrix at the statio
point are given by

xn
(1)5

b

2

ln

Ñ
F12S b2C2b2

C

C1hDln

Ñ
G ,

xn
(2)5

b

2

ln

Ñ
F12

C

C1h

ln

Ñ
G , n51, . . . ,N. ~18!

Following our previous analysis, we have

e

Ñ
<

ln

Ñ
<1. ~19!

Then we immediately see thatxn
(2) are all positive for anyb

and h; for xn
(1) we need to includeC(b,h) from Eq. ~13!.

We have checked numerically that the quantity in parent
ses in Eq.~18! is always smaller than 1, and thereforexn

(1)
a-

n

on

ry

-

are also all positive. From Eq.~18! we can derive an expres
sion for the determinant of matrix~15!. It is given by

1

N
ln detS 2

N

2
HU0D

5
2

N
ln detR1

1

N (
n51

N H lnF12S b2C2b2
C

C1hDln

Ñ
G

1 lnF12
C

C1h

ln

Ñ
G J . ~20!

When a,d, most ofln /Ñ go to zero forN→`, then the
sum in Eq.~20! is effectively constituted by the terms wit
the remainingln /Ñ. These terms are a fraction ofN that, as
we already pointed out, goes to zero whenN→`. If we call
N8(N) this fraction, then the sum in Eq.~20! can be bounded
from above by (N8/N)c→0 for N→`, wherec is a finite
number. Therefore the last term in Eq.~12! is zero. When
a.d, all terms contribute to the sum in Eq.~20!, and we
cannot give a meaningful expression for Eq.~12!. At the end
of the calculations, we can lete→0 in Eq. ~10!.

Then we have shown that any model witha,d on any
lattice is equivalent to HMF. From Eq.~17! we get an exact
expression forÑ:

Ñ52p1(
j Þ i

1

r i j
a

. ~21!

We have made a microcanonical simulation of Hamilton
~3! on a three–dimensional simple cubic lattice in zero m
netic field, using a fourth-order simplectic algorithm@6# with
time step 0.02, selected to have relative energy fluctuat
not exceeding 1/106. We have chosen a fixedN5343573,
and have simulated various energy densitiesH/N and vari-
ous a,3. In Fig. 1, we show that the numerical calor
curves collapse onto the universal HMF curve—the kind
results shown in@5# for a one-dimensional lattice, where

FIG. 1. The full line gives the canonical theoretical caloric cur
~temperatureT vs energy densityU) for long-range rotators com
pared with the microcanonical simulation of a three–dimensio
simple cubic lattice for three differenta values: 0.75~open circles!,
1.5 ~diamonds!, and 2.25~crosses!. Note that in spite of the size o
the system, still not very large~side with seven lattice sites!, the
results already follow very well the theoretical curve.
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slightly different Ñ has been used. Note that in Fig.
U5^H/N& andT52^K/N&, whereK is the kinetic energy in
Eq. ~3!.

III. CONCLUSIONS

Going back to the beginning of our discussion, it is no
clear that model~2! completely reduces to model~1! for a
50. In model ~1!, the range of the interactions is infinite
each rotator interacts with all the others and with the sa
intensity. To get a well-defined TL, it is sufficient to divideV
in Eq. ~1! by N, the total numbers of rotators. It is the
possible to compute caloric and magnetization curves@3#;
the spatial arrangement of the rotators has no effect on t
since the intensity of the interaction is the same for e
couple of rotators. In this paper, we have shown that, w
considering model~2!, it is possible to take into account th
spatial d-dimensional arrangement of the rotators and
decaying of their mutual interaction through a factorÑ,
ys
e

m
h
n

e

which is computable for any periodic lattice and anya,d.

Dividing by Ñ the potential energy in Eq.~2!, the model gets
a well-defined TL and it is possible to compute state cur
that become those of the HMF model with a proper norm
ization of the constantA in Eq. ~17!. The HMF (a50)
model has revealed peculiar equilibrium and nonequilibri
properties@2#, namely, ensemble inequivalence, metasta
ity, collective oscillations, anomalous diffusion, and intere
ing chaotic properties, both in the ferromagnetic and antif
romagnetic case. On the basis of the thermodynam
equivalence here established it would be interesting to inv
tigate thea dependence of all these properties. The study
the Lyapounov exponents in@4# heads in this direction.
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