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Canonical solution of a system of long-range interacting rotators on a lattice
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The canonical partition function of a system of rotat@assicalX-Y sping on a lattice, coupled by terms
decaying as the inverse of their distance to the poweis analytically computed. It is also shown how to
compute a rescaling function that allows us to reduce the model, fodatimensional lattice and for any
a<d, to the mean-field ¢=0) model.
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. INTRODUCTION universality emerges plotting/N as a function ofH/NN

and M as a function ofH/NN, from molecular-dynamics
simulation of model(2) for differentN and « values. These
authors conjecture that the results they obtained in the one-
dimensional case might be general, and valid in any dimen-

N
E: [1—cog 6~ 0,)]=K+V. (1) siond and fora<d.

Let us consider the following classical Hamiltonian model
of a system of rotators:

I\JII—\

=3

I\JII—‘

The potential energy is not thermodynamically stable and Il. PARTITION FUNCTION
the ensemble-averaged energy denslty (H/N) diverges In this work, inspired by3] and[5], we analytically com-

in thg th‘?r.’“"dy”amic imitTL) [1]. If the potential—energy pute the partition function of aN-rescaled mode®) for any
term is divided byN, then the energy density becomes inten-4 2nda<d. In formula(21), we give the right expression of

sive and it is bounded ds goes to infinity. . .~ ) .
the rescaling functioiN, to obtain universal-state curves for

Indeed, dynamics and thermodynamics of the I latt dels with | Q| ;
1/N-rescaled model have been extensively investigh®gd all lattice models wit ong-rangex<d) Interactions.
Let us now rewrite the rescaled version of Hamiltonian

in particular, Ruffo and Antoni, who called it the Hamil- _°
tonian mean-fieldHMF), X-Y model, solved it in the ca- (2):
nonical ensemble, and compared the theoretical caldrics(

U) and magnetizationN] vs U) curves with those obtained 10 1 XN 1—cog 6,—0))
from a microcanonical simulatiof8]. ) Z _N |2=1 e
Here we consider a generalization of modb: ! ij
N N
N
1 1 « 1—cog6,—6) —h,>, my—h, >, m;,, )
— 2, — ! ] X& ix y& iy
H 2§1L|+2§j ra (2) i=1 i=1

yvhere we have introduced an external magnetic field
= (hy,hy) of modulush, which makes it possible to compute
the magnetization. The indexdsj label the sites of a
d-dimensional generic latticer;; is the distance between

by Anteneodo and Tsallig4], who have numerically mea- them, with periodic boundary conditions and nearest image

sured the largest Lyapounov exponent, as a functidv aid convention(the definition ofr;; will be given shortly; and

«. Through a rescaling fact(w*:(Nlﬂi_l)/(l_a) An- a=0. At each site, a classical rotatoXK{Y spin) of unit
teneodo and Tsallis showed that their results coincide Wltﬁnomdentum of inertia r|18 reprhesLented by conjlugate canonical
those previously obtained for the HMFRxE0) model; this coordinates ;, 6;), where theL;'s are angular momenta,
rescaling could then give a well-defined TL to mod®). and theé;’'s €[0,27) are the angles of rotation on a family

I a recent paper, Tamarit and Anteneodo, using a rescafy BOEE RIS S0 B0 SR B R
ing factor N=2%(N'"“—1)/(1-a), have shown that the y P

) o . . vectors defined over these planes. To each lattice site, a spin
caloric and magnetization curves of mod2l in one dimen-

; : ector
sion collapse onto the curves of the HMF modlg]. This v

The rotators are placed at the sites of a lattice and the inte
action between rotatoisandj decays as the inverse of their
distance to the powaet.

A one-dimensional version of modé&?) has been studied

m; = (M, ,m;,) = (cosé; ,sin6;) 4
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1 N of the spectrum is negative, but it is easily seen that it is
M=(M,,M)= N Z m; . (5) shifted byb. Thus, callingp the least eigenvalues &’ for
=1 b=0 and choosing

Note i_n Eq. (3) the rescaling factoN in front of the b=—p+e, >0, (10)
potential-energy term, now written as a free double sum over

both indexesN should be regarded as an unknown functionwe have that with thid the whole spectrum oR’ (and
of N, «,d and the geometry of the lattice, with the fundamen-therefore that ofR) becomes positive. Then for eadh
tal property of making =1,... N, u=xy we can apply Eq(9) with the corre-
spondencea—R;, S—n;,, z—z,. Performing the inte-
2 i grals over variablesy; and using the transformation,
BN =23(UR);;¥;, with Jacobian YdetR, we can rewrite the
partition function as
an intensive quantity; this guarantees the thermodynamic sta-
bility of the potential. We also note that the sum in E§).is detR [+
independent of the origin because of periodic conditions. Z=CZx J
To reproduce the usual HMF it is also necessary that

ijpm
N(N,a=0d)=N. The constraint+] over the double sum
is removed defining{;=1/b, a finite number. Since the nu- N Z In * (1)
merator 1-cos@—#6,) is zero fori=j, the choice ofb is

free. The removal of the constraint allows us to introduce th‘?/vherelo is the zeroth-order modified Bessel function. The
distance matrix}j;= 1/} ; the diagonalization of such ma- jsolation of theN factor in the exponential prepares the ob-
trix is the key point to obtain, in the computation of the ject for the use of the saddle-point method. The quantity in
partition function, known integrals in the variablés. curly brackets is intensivé.e., not dependent oN for suf-

As usual, the partition function factorizes in a kinetic partficiently large N). Double sums in the first two terms are

ZK:(ZW/'[?),N/Z’ where,8=~1/kBT, and a potential paZy . compensated bR/N=(8/2NN)R’ and the last sum hasN/
After defining R;;=(B/2N)Rj;, B=ph, C=exd—(B/  in front of it. The argument of; is also intensive because it
2N)Zi(1/r{j)], the potential part can be written as involves a term of the forms;R;;=(8/2N)Z;R);. If we
. call f(w) the function in curly brackets, wherev
szcf dNaexp{ > mi,uRijmj,u"'z B,m,|, (7 =V, - Uy, Wy, - .. W), then the application of
- ip [ the method requires the following three conditioh@v) ad-

, . , , mits a stationary pointvy; Wq is a simple stationary point,
where p=Xx,y. Diagonalizing the symmetric matrR ¢ "gepy| 0, whereH|, is the Hessian matrix dfin wo;
=(Rjj) with the unitary matrixU such thaR=U DU, Dy hath of integration can be deformignerally going into
=(R;d;j), whereR; are the eigenvalues &, we can write  »2N) jntg g path that passes through following the steep-
the first part of the exponent in E(7) as est descent of (w) and such thaf (w)< f(w,) throughout

the whole path. If the pointvy is a maximum, no deforma-
> (MR My +myRymy,) = (N2Ri+n3R), (8) tion is necessary and the method is also called the Laplace
1 I method. Since, as we show below is indeed a real-valued

. maximum, we readily obtain for the free ener er particle
wheren; ,=Z;U;;m; . In order to apply the Gaussian trans- = y gy perp

(6)

2 -

dN«pde\pyexp( N| ~ 2 Vi Vi

o

22 R”qr,—+5‘
J

27T|0(

formation

1 o ~Inz

eaSZZ f dze—22/4a+SZ a>0 (9) —BF= lim W

4mal -« N—
to each term of the sum in the right-hand side of Eg), , 1 (27 B 1
eachR, must be positive. The spectrum can be explicitly = lim 5'” BN A — tma{f(w)]

. R . . . N— o 2N or w

computed using d-dimensional Fourier transform of matrix 1
R, the eigenvalues being labeled by vectors of the reciprocal
lattice. These eigenvalues are trivially related to those of
matrix R’. A study of the spectrum oR’ in the limit N 1 detR
—oo and forb=0 shows that whemx>d, each element of + Nln : (12)
the spectrum converges to a finite quantity, the least eigen- /det( _ EH
values being negative and of order one in modulus; when 2|0

a<d, a part of the spectrum converges to a finite quantity,

another part diverges té-o, at most asN. However, this The stationary pointw, is given by the vector
last part consists of a fraction of the total number of eigen{¥,, ..., ¥,,¥,, ..., ¥,), homogeneous on the lattice
values that goes to zero in the linNt—c. The least eigen- sites. Defining¥= (¥, ,V,), its direction is that oB, and
value is still negative and of order one in modulus. Then partts modulusW¥ is given by the solution of
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\Ile—l(ﬁ[A\Ierh]), (13) 2 1
o [ ]
with 15 | ]
1 1 1 X
A== Ri==|b+> —|, (14) Tt ]
N j N J#I ri‘]-‘
o5 [ ]
and wherel ; is the first-order modified Bessel function. In i ]
Eqg. (14), A does not depend ohbecause of the periodic

-y . -_ o L A P P P L 1 T 1
bpundary conditions. We notg that \(vhbﬁro we have infi o 02 04 o6 o8 1 12 14 16
nitely many degenerate solutions, since only the mod#us

is determined. Evaluation of the elements of the Hessian ma- u
trix at the stationary point gives us FIG. 1. The full line gives the canonical theoretical caloric curve
(temperatureT vs energy density) for long-range rotators com-
N 9°f pared with the microcanonical simulation of a three—dimensional

) IV ,0V;, 0: Rij 5#V_(R2)” 9un(Wo) (19 simple cubic lattice for three differeat values: 0.75open circles
1.5 (diamond$, and 2.25(crosses Note that in spite of the size of

where we do not give the explicit expressiormfv(wo). As the system, still not very largéside with seven lattice sitgsthe
we will see shortly, the eigenvalue analysis of the Hessiafesults already follow very well the theoretical curve.
matrix (15) shows that the stationary pow, is a maximum. » )
Then, the Laplace method applies and EtQ) is valid. &€ also all positive. From Eq18)_we can de_rlve an expres-
However, only in the long-range case<d) is the last term SN for the determinant of matrigd5). It is given by
in the rightmost side of Eq12) zero; whena>d its expres-
sion does not appear to be manageable. We will comment o}_lm de( _ EH O)
this point later. Restricting then te<d, and computing the N 2

derivative of Eq.(12) with respect to the magnetic field, we ) LN \
find that the magnetizatioM =(|M|) is given by the solu- — “IndetR+ — In 1_( _ylg_ An
tion ¥ of Eq. (13). Then, the internal energy is given by N N nz’l A A v+h/ N
ABF) 1 A oA
=———=—+-(1-M?)—-hM. 16 . On
B 2B 5 ) (16) +In[ 1 vrh |l (20)

Equations(13) and (16) are the same as those of HMF, as

~ . . When a<d, most of)\n/N go to zero forN—oo, then the
soon as a prope rescaling gives

sum in Eq.(20) is effectively constituted by the terms with

1 1 1 the remaining\,/N. These terms are a fraction Wfthat, as
A== 2 Ri’j ==|b+ E —|=1. (17 we already pointed out, goes to zero when-«. If we call
N N £ T N’(N) this fraction, then the sum in E€RO) can be bounded

from above by N'/N)c—0 for N—«, wherec is a finite
number. Therefore the last term in Ed.2) is zero. When
a>d, all terms contribute to the sum in E¢RO), and we
Rannot give a meaningful expression for EtR). At the end
of the calculations, we can let—0 in Eq. (10).

Then we have shown that any model with<d on any

Now, from Eqgs.(15) and(17), and calling\ , the eigenvalues
of R’, we find that, choosin® along one of the coordinate
axes, the eigenvalues of the Hessian matrix at the stational
point are given by

(1):§ﬁ 1—| g—w2g— — An lattice is equivalent to HMF. From E@17) we get an exact
Xn 2 =~ B B \I,_I_h ~ Lt . ~
N expression foilN:
A v oA
@ B Y M) N (B Mo S
XT3 R VIR | b N= p+j§;:,i r,‘j (21)

Following our previous analysis, we have We have made a microcanonical simulation of Hamiltonian

(3) on a three—dimensional simple cubic lattice in zero mag-
<1. (199  netic field, using a fourth-order simplectic algoritti6i with

time step 0.02, selected to have relative energy fluctuations

not exceeding 1/10 We have chosen a fixed=343=73,
Then we immediately see thgf?) are all positive for any3  and have simulated various energy densitig®l and vari-
andh; for x{") we need to includéV(B,h) from Eq.(13).  ous @<3. In Fig. 1, we show that the numerical caloric
We have checked numerically that the quantity in parentheeurves collapse onto the universal HMF curve—the kind of
ses in Eq.(18) is always smaller than 1, and therefQ(E) results shown if5] for a one-dimensional lattice, where a

=

2 m
z|



306 CAMPA, GIANSANTI, AND MORONI PRE 62

slightly different N has been used. Note that in Fig. 1 Which is computable for any periodic lattice and amy-d.
U=(H/N) andT=2(K/N), whereK is the kinetic energy in  Dividing by N the potential energy in E¢2), the model gets

Eq. (3). a well-defined TL and it is possible to compute state curves
that become those of the HMF model with a proper normal-

[1l. CONCLUSIONS ization of the constanA in Eqg. (17). The HMF (¢=0)
. o . L model has revealed peculiar equilibrium and nonequilibrium
Going back to the beginning of our discussion, it is NOW ;o tieq[2], namely, ensemble inequivalence, metastabil-
clear that mode(2) completely reduces to modél) for « ity, collective oscillations, anomalous diffusion, and interest-

=0. In model(1), the range of the interactions is infinite; jnq chaotic properties, both in the ferromagnetic and antifer-
each rotator interacts with all the others and with the Sam?omagnetic case. On the basis of the thermodynamical
intensity. To get a well-defined TL, itis sufficient to divide o jiyalence here established it would be interesting to inves-

in Eq. (1) by N, the total _numbers of rotators. It is then tigate thea dependence of all these properties. The study of
possible to compute caloric and magnetization cufBls  yq | yanounov exponents [#] heads in this direction.
the spatial arrangement of the rotators has no effect on them

since the intensity of the interaction is the same for each
couple of rotators. In this paper, we have shown that, when ACKNOWLEDGMENT
considering mode(2), it is possible to take into account the

spatial d-dimensional arrangement of the rotators and the A.G. warmly thanks C. Tsallis for having suggested the
decaying of their mutual interaction through a facfdr  study of the long-range interacting rotators.

[1] D. Ruelle, Statistical Mechanics: Rigorous Resu(#ddison- [3] M. Antoni and S. Ruffo, Phys. Rev. &2, 2361(1995.
Wesley, New York, 198p [4] C. Anteneodo and C. Tsallis, Phys. Rev. L&f, 5313(1998.

[2] V. Latora, A. Rapisarda, and S. Ruffo, Prog. Theor. Phys. [5] F. Tamarit and C. Anteneodo, Phys. Rev. L8#, 208(2000.
Suppl.(to be publishey e-print cond-mat/0001010 [6] H. Yoshida, Phys. Lett. A50, 262 (1990.



